当前位置:首页 / 数据库工具
数据库工具
免费工具
  • Data for Everyone
  • Stanford Large Network Dataset Collection
  • Elasticsearch是基于Apache Lucene搜索分布式文件服务器。它的核心,Elasticsearch基于JSON格式的近乎实时的构建了数据索引,能够实现快速全文检索功能。结合开源Kibana BI显示工具,您可以创建令人印象深刻的数据可视化界面。Elasticsearch易于设置和扩展,他能够自动根据需要使用新的硬件来进行分片。他的查询语法和SQL不太一样,但它也是大家很熟悉的JSON。大多数用户不会在那个级别进行数据交互。开发人员可以使用原生JSON-over-HTTP接口或常用的几个开发语言进行交互,包括Ruby,Python,PHP,Perl,Java,JavaScript等。
  • Drill是一种用于大型数据集的交互分析的分布式系统,由谷歌的Dremel催生。Drill专为嵌套数据的低延迟分析设计,它有一个明确的设计目标,灵活的扩展到10000台服务器来处理查询记录数据,并支持兆级别的数据记录。嵌套的数据可以从各种数据源获得的(如HDFS,HBase,Amazon S3,和Blobs)和多种格式(包括JSON,Avro,和buffers),你不需要在读取时指定一个模式(“读时模式”)。Drill使用ANSI 2003 SQL的查询语言为基础,所以数据工程师是没有学习压力的,它允许你连接查询数据并跨多个数据源(例如,连接HBase表和在HDFS中的日志)。最后,Drill提供了基于ODBC和JDBC接口以和你所喜欢的BI工具对接。
  • 在大数据领域,Kafka已经成为分布式发布订阅消息的事实标准。它的设计允许代理支持成千上万的客户在信息吞吐量告诉处理时,同时通过分布式提交日志保持耐久性。Kafka是通过在HDFS系统上保存单个日志文件,由于HDFS是一个分布式的存储系统,使数据的冗余拷贝,因此Kafka自身也是受到良好保护的。当消费者想读消息时,Kafka在中央日志中查找其偏移量并发送它们。因为消息没有被立即删除,增加消费者或重发历史信息不产生额外消耗。Kafka已经为能够每秒发送2百万个消息。尽管Kafka的版本号是sub-1.0,但是其实Kafka是一个成熟、稳定的产品,使用在一些世界上最大的集群中。
  • opentsdb是建立在时间序列基础上的HBase数据库。它是专为分析从应用程序,移动设备,网络设备,和其他硬件设备收集的数据。它自定义HBase架构用于存储时间序列数据,被设计为支持快速聚合和最小的存储空间需求。通过使用HBase作为底层存储层,opentsdb很好的支持分布与系统可靠性的特点。用户不与HBase的直接互动;而数据写入系统是通过时间序列的守护进程(TSD)来管理,它可以方便的扩展用于需要高速处理数据量的应用场景。有一些预制连接器将数据发布到opentsdb,并且支持从Ruby,Python以及其他语言的客户端读取数据。opentsdb并不擅长交互式图形处理,但可以和第三方工具集成。如果你已经在使用HBase和想要一个简单的方法来存储事件数据,opentsdb也许正好适合你。
  • Zeppelin是一个Apache的孵化项目. 一个基于web的笔记本,支持交互式数据分析。你可以用SQL、Scala等做出数据驱动的、交互、协作的文档。(类似于ipython notebook,可以直接在浏览器中写代码、笔记并共享)。一些基本的图表已经包含在Zeppelin中。可视化并不只限于SparkSQL查询,后端的任何语言的输出都可以被识别并可视化。 Zeppelin 提供了一个 URL 用来仅仅展示结果,那个页面不包括 Zeppelin 的菜单和按钮。这样,你可以轻易地将其作为一个iframe集成到你的网站。Zeppelin还不成熟。我想把一个演示,但找不到一个简单的方法来禁用“Shell”作为一个执行选项(在其他事情)。然而,它已经看起来的视觉效果比IPython笔记本应用更好,Apache Zeppelin (孵化中) 是 Apache2 许可软件。提供100%的开源。